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Numerical study of geometrical dispersion in self-affine rough fractures
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We report a numerical study of passive tracer dispersion in fractures with rough walls modeled as the space
between two complementary self-affine surfaces rigidly translated with respect to each other. Geometrical
dispersion due to the disorder of the velocity distribution is computed using the lubrication approximation.
Using a spectral perturbative scheme to solve the flow problem and a mapping coordinate method to compute
dispersion, we perform extensive ensemble averaged simulations to test theoretical predictions on the disper-
sion dependence on simple geometrical parameters. We observe the expected quadratic dispersion coefficient
dependence on both the mean aperture and the relative shift of the crack as of well as the anomalous dispersion
dependence on tracer traveling distance. We also characterize the anisotropy of the dispersion front, which
progressively wrinkles into a self-affine curve whose exponent is equal to that of the fracture surface.
@S1063-651X~98!05009-0#
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I. INTRODUCTION

A. Motivation of the study

Flow and mass transport in fractured media is a comp
problem with many applications to pollutant dispersion a
waste storage as well as to geothermic and oil and gas
covery processes@1,2#. From a fundamental point of view, i
has recently stimulated a great deal of interest in connec
with different approaches to the description of fractu
roughness in terms of a self-affine geometry@3,4#. A key
observation@5,6# is that flow and solute transport are n
distributed evenly across the fracture surface: Instead,
are often concentrated in some preferential flow paths w
large parts of the fracture often act as dead zones. This e
is very much dependent on the roughness of the frac
walls and it plays a crucial role in enhancing pollutant tra
port in a fractured zone.

In the present paper we present a numerical simulatio
tracer dispersion in fractures with self-affine rough wa
Tracer dispersion, due to its nonlocal nature@7,8#, is indeed a
unique tool used to detect and characterize the influenc
preferential flow channels: Particles flowing through su
paths cross the sample and reach the detectors much s
than those trapped inside low-velocity zones. More glo
measurements such as the average permeability or elec
conductivity of the fracture are dominantly controlled by
effective aperture@9# and thus are less sensitive to flow he
erogeneities. Previous studies have indeed confirmed
tracer dispersion in fracture geometries@5,10,11# often re-
sults largely from disparities between transit times alo
macroscopic parallel flow channels.

The present work is devoted to a systematic quantita
numerical analysis of these problems in the realistic case
self-affine roughness geometry. We investigate in particu
PRE 581063-651X/98/58~3!/3334~13!/$15.00
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the influence of the sample size, of the relative displacem
of the complementary rough walls, and of the orientati
between the mean flow and the displacement. The sim
tions are two-dimensional, involving a two-dimensional fra
ture surface, and the flow is computed in the lubrication
proximation. Let us discuss now the dispersion mechanis
acting in fractures and their domain of applicability.

B. Tracer dispersion mechanisms in rough fractures

Tracer dispersion is a key tool used to analyze nonlo
spatial correlations of the velocity field in a porous or fra
tured system. We consider a steady three-dimensional St
flow uW (x) established in the rough wall fracture geome
introduced above. Locally, we assume that the local tra
concentrationc obeys a convection-diffusion equation

]c~xW ,t !

]t
1uW ~xW !•¹W c~xW ,t !5Dm¹2c~xW ,t !, ~1!

whereDm is the molecular diffusion coefficient. This beha
ior is postulatedat the local level.

Our aim is to be able to characterize the dispersion pr
erties of the tracer in such a geometry without having
resort to a detailed three-dimensional description. Up
coarse graining at a scale much larger than the heteroge
scale and integration over the thicknessx3 of the crack, it can
be shown that if the heterogeneity is small enough,
coarse-grained concentrationC(x1 ,x2) obeys an effective
convection-diffusion equation, with the coarse-grained
locity UW (x1 ,x2) giving the advection term and an effectiv
dispersivity tensorDi j .

We define the coarse-grained fields as
3334 © 1998 The American Physical Society
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PRE 58 3335NUMERICAL STUDY OF GEOMETRICAL DISPERSION . . .
C~x1 ,x2!5E E w~x12x18 ,x22x28!

3S ~1/h!E c~x18 ,x28 ,x38!dx38 Ddx18dx28 , ~2!

where h is the aperture of the crack andw is the coarse-
graining weight function, e.g., a Gaussian, of unit integ
and decaying fast above a typical length scale larger than
heterogeneity scale. A similar transformation is made on
velocity field. The macroscopic description can be written
@7#

]C

]t
1Ui

]C

]xi
5Di j

]2C

]xi]xj
. ~3!

Ui and Di j are, respectively, the components of the lo
mean macroscopic flow velocity through the fracture or
porous sample~averaged over the aperture! and of the dis-
persivity tensor. The latter dispersivity tensor results fro
velocity fluctuations in the local field and/or systema
variation across the thickness, which are absent from
coarse-grained description.D can be expressed as the L
grangian velocity field covariance tensor@12#

Di j 5 lim
T→`

K E
0

T

@Vi~0!2Ui #@Vj~ t !2U j #dtL , ~4!

where the integration is performed over particule trajecto
andV is the two-dimensional velocity field obtained from a
integration ofuW over the aperture.

Several dispersion mechanisms are present in fractu
Let us first discuss the ideal case of a perfect Hele-Shaw
i.e., an ideal plane crack with a constant apertureh, and an
uniform flow. In this case, the velocity is simply a Poiseui
flow with a parabolic profile across the thickness. The coa
graining in this simple case consists in averaging the velo
components over the thickness. Pure molecular diffusio
significant only at extremely low velocities such that the P´-
clet number Pe5Uh/Dm is less than 1. At high velocities
the Taylor dispersion mechanism@13# dominates: It accounts
for the spreading due to the Poiseuille velocity profile b
tween the fracture walls balanced by transverse molec
diffusion ~homogenizing tracer concentration across the
erture!. The resulting longitudinal ‘‘Taylor’’ dispersion coef
ficient D i can be obtained analytically in this case for par
lel plane walls as@14#

D i5DTaylor5
h2U2

210Dm
1Dm ~5!

(D i is the longitudinal dispersivity coefficient, i.e.,Dxx for a
flow along thex axis!. Taylor dispersion is observable i
fractures because of their inherently quasi-two-dimensio
flow geometry: Only molecular diffusion can move trac
particles across the flow lines away from the fracture walls
towards them. On the contrary, in usual random thr
dimensional porous media such as grain packings, a g
flow line moves continuously away from pore walls or t
wards them along its path through severals pores; hence
lor dispersion does not play such an important part. Mole
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lar diffusion and Taylor dispersion are the only tw
mechanisms active in fractures with smooth plane walls.

For rough walls, on the contrary, the aperture of the cra
is no longer constant and therefore the fluid velocity displa
spatial fluctuations even after being averaged over the th
ness. This additional mechanism is also assumed to be t
into account in the coarse description, corresponding t
scale much larger than the heterogeneity scale. It induc
geometrical dispersion component, an effect comparabl
that observed in three-dimensional porous media@7,15#!. If
Eq. ~3! is satisfied, the longitudinal coefficientD i is propor-
tional to velocity~the dispersivityl D5D // /U represents the
Lagrangian correlation length of the flow field!. The geo-
metrical, molecular, and Taylor dispersion components s
ply add up in series: Thus theU2 Taylor dispersion compo-
nent dominates at high velocities, geometrical (U)
dispersion at lower ones, and finally (U0) molecular diffu-
sion at still lower velocities. A quantitative theoretical anal
sis of the expected transition between these different regi
can be found in@16# as well as predictions of the dependen
of the geometrical regime on the roughness of the cra
These predictions are verified qualitatively in experime
@17# on model fractures with parallel plane walls: For smoo
surfaces, only molecular and Taylor dispersion are observ
for rough ones, geometrical dispersion occurs at low velo
ties and the Taylor component dominates at higher ones

The present numerical model deals with geometrical d
persion effects directly associated with the velocity field d
order; Taylor and molecular dispersion terms are, on the c
trary, much less related to flow field heterogeneities and
not taken into account. We can thus use a simpler tw
dimensional model since we do not need to take into acco
the flow structure in the direction perpendicular to the fra
ture surface. These simulations describe adequately tr
dispersion in the intermediate range of Pe´clet number values
such that both molecular diffusion and Taylor dispersion
negligible. The limit of validity increases towards higher P
values as the heterogeneity of the flow field increases fo
given mean fracture aperture: Geometrical dispersion, ind
increases with heterogeneity and ends up superseding Ta
dispersion which remains almost the same. It must be a
pointed also that the Gaussian convection-diffusion equa
~3! is valid only if the correlation length of the flow velocit
field is small compared to the sample size: This is not
case when large-scale preferential channels are presen
dispersion must then be characterized in another way.

C. Geometrical and transport properties
of self-affine rough fracture joints

An important point in modeling the topography of fra
ture surfaces is the observation that they can often be
scribed as self-affine structures@3#: This applies to very di-
verse materials~for instance, metal alloys, concrete, roc
such as granite@18,19#, marble, and sandstone@20#!. Self-
affine surfaces display scale invariant properties provid
one uses different dilation ratios parallell1 , l2 and perpen-
dicular l3 to the mean fracture plane, related by

l35l~1,2!
z ~6!

(z is called the Hurst exponent!. This property implies the
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existence of long-range correlations in the geometrical st
ture of the fracture surface: These in turn give rise to len
scale effects that must be understood and taken into acc
when extrapolating laboratory scale measurements to
applications. Such characteristics are observed for very
verse materials and fracturation mechanisms; the exponez
has also been found in many cases to be close to a s
valuez50.860.05, although some deviations have been
served for some materials and at some length scales.

It has been suggested@4# that these self-affine feature
allow one to predict variations of geometrical and transp
properties for fractures limited by complementary surfa
shifted with respect to each other. A an important ingredi
is the residual displacementDz perpendicular to their mea
plane of two such surfaces of global sizeL after they have
been displaced laterally by a distanceDx. It has been shown
@18# both experimentally~on granite blocks! and theoreti-
cally thatDz does not scale exactly as expected asDxz, but
that a logarithmic finite size term depending on the ra
Dx/L must be introduced. Global physical quantities such
the permeability of the fracture or its effective electrical co
ductance after it has been saturated with a conducting fl
have also been studied@9#. Both the permeability and the
electrical conductances are shown to depend mostly on
normal distanceDz, however, very large fluctuations o
these quantities are observed when the direction and the
plitude of the lateral displacementDx is varied,Dz being
kept constant. This confirms that the flow velocity and t
electrical current fields are influenced by the displacem
and that strong heterogeneities may appear: tracer dispe
should be much more sensitive to these effects.

Previous numerical simulations@21,22# have been per-
formed to investigate the influence of random or self-affi
roughness on tracer dispersion through fractures: It is
sumed in these works that the local fracture thickness
mains constant in the direction perpendicular to the flow
the fracture plane. This allows one to describe in detail
influence of roughness on Taylor dispersion; however, i
impossible in this framework to account for geometrical d
persion effects that require thickness variations in the
directions of the mean fracture plane. Other auth
@10,11,5,23# have studied flow in fractures simulated as
random permeability field accounting for aperture variatio
They did not, however, introduce specific aspects relate
the self-affine roughness geometry or to the fact that we
not dealing with independent rough surfaces but with ide
cal surfaces shifted by a specific amount. This mirrors
fact that actual fractures observed in nature are created
a single block of material@24# with the two halves shifted
thereafter by external stresses. It has been shown theo
cally @18# that, in this case, the correlation between the
erture at two different points of the fracture depends stron
on the relative displacement of the surfaces: This will ob
ously influence the structure of the flow field. We shall the
fore pay particular attention to the influence on tracer disp
sion of this relative shift and of its orientation; the influen
of the finite size effects discussed above on the magnitud
dispersion will also be investigated.

II. NUMERICAL METHODS

Our aim is to take into account the multiscale features
the crack permeability induced by the crack roughness.
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mentioned in the Introduction, we focus here on case of s
affine topography, observed in many instances. We first g
erate a self-affine surface with biperiodic boundary con
tions. We used both a dichotomy algorithm introduced
Voss@25# and a Fourier method to generate such a self-af
topography. The roughness exponent is chosen to bz
50.8. The amplitude of the roughness is chosen so that
mean value of the height difference at the mesh size of
discretization is constant. Therefore, the global standard
viation of the height of the crack depends on its sizeL. The
crack surfacez(x) is then used to compute the aperture
the crack after the two faces are translated with respec
each other by a shift along the mean crack planeu, plus a
translationh normal to the mean plane so that the two s
faces do not overlap but have a point of contact. Therefo
we obtain the aperture field asa(x)5z(x)2z(x1u)1h.

Given the aperture field, we use the lubrication or Re
nolds approximation to compute the velocity field. Thus w
consider the aperture gradient to be small enough so tha
may consider that the velocity field is locally a Poiseui
flow everywhere in the crack, with a parabolic velocity pr
file across the aperture. This reduces the three-dimensi
problem to a two-dimensional one and we simply have
determine the aperture-averaged velocity fieldvW from ~i! the
incompressibility condition

¹W •@a~xW !vW ~xW !#50 ~7!

and~ii ! the flux/pressure relation similar to Darcy’s law, wit
a local permeability proportional to the square of the apert

v~xW !52
a2~xW !

12h
¹W P~xW !52

k~xW !

h
¹W P~xW !, ~8!

whereP is the coarse-grained pressure field. The applica
ity of the Reynolds approximation is based on the condit
that the aperture gradient is much smaller than unity, i
u¹W au!1. In turn, this implies that the local slope of the cra
surface is much smaller than unity. Let us note that in
case of a self-affine crack, with a roughness exponent stri
smaller than unity, the coarse-grained slope estimated
scalel decreases asl z21. Therefore, the small slope limi
tation can be used at a sufficiently coarsened scale if
effective hydraulic aperture is introduced. Using an expe
mental determination of the crack surface topography,
Reynolds approximation has been shown to be valid abo
scale of a few series of 10mm @9#.

The numerical solution proceeds in two steps. One fi
solves for the pressure and stream function. Then tracer
vection is computed in the pressure-stream function coo
nate system and the corresponding spreading of a tracer
profile is computed from the advection time along strea
lines.

A. Hydraulic solution

Given the permeability fieldk(xW ) on a squaredL3L

meshed domainD, the pressure fieldP(xW ) satisifes the equa
tion imposed by the divergence-free flux field and the lo
Darcy relation~8!:
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DP~xW !52
3

2

¹W k~xW !

k~xW !
•¹W P~xW !52

3

2
¹W @ ln k~xW !#•¹W P~xW !.

~9!

From the definition of the stream functionCW (xW )
5„0,0,C(xW )…, a(xW )vW (xW )5¹W 3CW (xW ), and Darcy’s law~8!
we get

DC~xW !5
3

2

¹W k~xW !

k~xW !
•¹W C~xW !5

3

2
¹W @ ln k~xW !#•¹W C~xW !,

~10!

with

¹W P~xW !•¹W C~xW !50.

These two very similar equations can be solved, simu
neously and iteratively, by a spectral method consistent w
the biperiodicity of the permeability field. This choice is n
merically convenient in the sense that it limits the spurio
effects of boundary conditions. However, its weakness lie
the absence of an experimental counterpart.

We note that if the pressure gradient is periodic, the pr
sure itself is not periodic but can be split into a periodic p
and a constant gradient term. The latter is treated separ
and acts as the forcing term for the flow. The mean press
gradient is oriented at 45° with respect to the principal a
of the square grid used in the discretization, in order to lim
mesh orientation effects. The spectral iterative procedur
based on a weak disorder expansion, commonly encount
in heterogeneous porous media literature@7#. The following
procedure, albeit restricted to weakly heterogeneous m
unlike Ref @26#, is consistent with the aperture field of rea
istic fractures@9#. From Eq.~9! we look for a solution for the
pressure gradient in the form of an expansion

¹W P~x!5¹W P~0!~x!1¹W P~1!~x!1•••1¹W P~n!~x!1•••,

~11!

where

DP~0!~x!50 ~12!

for

n.0DP~n!~x!52
3

2
¹W @ ln k~x!#•¹W P~n21!~x!.

The zeroth-order solution corresponds to the imposed c
stant mean pressure gradient, i.e.,¹W P0(x)5¹W P0. Each con-
secutive term is computed with a standard pseudospe
technique. We compute on the right-hand side the sc
product in direct space, while Laplacian inversion is calc
lated in Fourier space on the left-hand side. The use of
fast Fourier transform algorithm makes this procedure v
efficient compared to direct-space conjugate gradient te
niques. A sufficient condition for such spectral iterative p
cedure to converge is32 ¹W ln k(x)•¹W P0/i¹W P0i,1 for every
position x, provided the greater eigenvalue associated w
the iterated pressure solution is always 1. A less restric
condition can be obtained with an underrelaxation iterat
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scheme. Such an underrelaxation can even be impose
cally, i.e., precisely in the region where32 ¹W ln k(x)•¹W P0/
i¹W P0i.1, for greater efficiency.

B. Tracer dispersion

Once the pressure and velocity fields are determined,
wish to model thegeometrical dispersion regime. For that
purpose, we note that the parabolic velocity profile is
essential ingredient of the Taylor regime, but that it does
affect the geometrical dispersion. We assume that molec
diffusion is efficient enough to avoid the Taylor regime, i.
Ua/Dm,1. This allows us to deal simply with the apertur
averaged velocity field~i.e., a two-dimensional description i
the mean crack plane!. It is assumed that aperture variation
occur over much larger scales than the mean aperture an
velocity is large enough to have convection effects domin
compared to diffusion ones. For this discussion, we int
duce the ‘‘Pe´clet’’ number Pe8 constructed from the velocity
fluctuationdV and the correlation length of the aperture flu
tuation j so that Pe85dVj/Dm . To observe the geometri
dispersion regime we assume Pe8@1. In this limit, valid only
for j@h, we can consider the ‘‘infinite’’ Pe´clet number limit
of the two-dimensional description. More precisely, usi
our previously defined Pe´clet number Pe5Uh/Dm , we ob-
tained in@16# the limit of validity of the geometrical regime

S dV

U D 22 h

j
!Pe!S dV

U D 2 j

h
. ~13!

It must be stressed that such a limiting condition is nee
when there is a well defined correlation length for the velo
ity field. We expect a less restrictive condition in the pre
ence of long-range correlations of the velocity field as exa
ined here. It is also important to note that this limit
different from the infinite Pe´clet limit of the full three-
dimensional problem, which is evidently governed by t
Taylor regime.

To compute tracer dispersion in the geometric regime,
have to study the transit time distribution for particles pa
sively advected across the domain by the fluid flow. In ord
to follow the particle trajectories we use a coordina
change from Cartesian (x,y) position to an adimensionalize
pressure-stream function„P(x,y),C(x,y)… orthogonal coor-
dinate system. This procedure is interesting because it o
comes numerical problems currently encountered with dir
Lagrangian computation of particle trajectories, such as
cally nondivergent free velocity fields coming from a co
tinuous interpolation of the discrete flow field. Such effec
although localized at the mesh size scale, are accumul
over the particles’ trajectories and can lead to spurious v
lations of the periodicity of the tracer spatial distribution
the case of periodic boundary conditions. The idea of
present method is to compute the trajectories of particles
change of coordinates. A mandatory condition for such
coordinate mapping to exist is the bijectivity of the mapi
between the coordinates (x,y) and the pressure stream
function„P(x,y),C(x,y)… pair. This condition is fulfilled for
a strictly monotonic pressure in the direction of the me
imposed flow and a strictly monotonic stream function p
pendicular to this direction. This is obtained, in our case
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the presence of a mean imposed pressure gradient,
weakly heterogeneous media. More precisely, for such
dium, each consecutiventh term of the pressure expansio
written in Eq. ~11! can be shown @27,7# to be of
O„s2n(lnk)…, wheres(lnk) is the log-permeability fluctua
tion parameter. A weak disorder expansion~9! can be written
if s(lnk)!1, which gives a sufficient condition to impose
strictly monotonic pressure and stream function for a lo
normal permeability field distribution. Practically, for fres
noncompressed fractures, relative fluctuations of the aper
field are sufficiently weak@9# to allow for such a coordinate
mapping. Hence one is interested in inverting t
„P(x,y),C(x,y)… relation to find the„x(P,C),y(P,C)… po-
sitions of pressure and stream-function isovalues. To s
plify notations, we introduce the normalized stream-funct

c~x,y!5C~x,y!/^k&, ~14!

where ^k& is the arithmetic mean of the permeability fiel
This choice provides symmetrical expression for the press
and the normalized stream function. At the zeroth order
perturbation expansion the Darcy law~8! can be rewritten
¹W 3cW 05¹W P0. This relation can be inverted numerically b
an iterative procedure. We will write for convenience th
inversion with a mean pressure gradient parallel tox axis.
We choose a mean pressure gradient parallel to the princ
diagonal direction for numerical precision

P~x,y!5x1 f ~x,y!, ~15!

c~x,y!5y1g~x,y!.

The functionsf and g are known from the numerical solu
tion of Eqs.~9! and ~10!. We are now interested in findin
the inverse mapping

x~P,c!5P1X~P,c!, ~16!

y~P,c!5c1Y~P,c!,

where X(P,c),Y(P,c) are the desired inverse mappin
functions. From Eqs.~15! and ~16! we obtain the implicit
equation satisfied byX(P,c) andY(P,c),

X~P,c!52 f ~P1X,c1Y!52 f , ~17!

Y~P,c!52g~P1X,c1Y!52g.

The computation ofX(P,c),Y(P,c) is achieved in the sam
spirit as Eq.~9! with an iterative procedure. First, we ap
proximate the right-hand side dependence off (x,y) and
g(x,y) by f (P,c) andg(P,c),

X0~P,c!50, ~18!

Y0~P,c!50.

We then proceed iteratively forn.0,

Xn~P,c!52 f ~P1Xn21,c1Yn21!, ~19!

Yn~P,c!52g~P1Xn21,c1Yn21!.
for
e-

-

re

-
n

re
f

al

The convergence of this method is conditioned by the Ja
bian J(x,y) $P,C% of the transformation~16!. It is straightfor-
ward to show that this Jacobian satisfies

J21~x,y!$P,c%5¹W P•¹W 3cW 5i¹W Pi2
a~x!3

12h
. ~20!

Computing Eq.~16! thus requires that at each (x,y) location
iJ(x,y) $P,C%i<1. As can be seen from Eq.~20!, this condi-
tion is fulfilled in a weakly disordered system, where t
local dissipated energy is dominated by the mean impo
¹W P0

•¹W 3cW 0. Numerical implementation of this iterativ
procedure requires, at each step, the estima
Xn(P,c),Yn(P,c) on the continuous system of coordinat
(P,c), from the values off and g on a discrete one. This
estimation is achieved with an undermesh mapping, to in
polate linearly an accurate estimation of the continuous
sired Xn(P,c),Yn(P,c). Dispersion curves are then easi
computed in the (P,c) coordinate system, integrating th
advection time along each streamlinec(x,y)5c.

III. NUMERICAL RESULTS

A. Stream-function structure

The aperture maps of Figs. 1~a! and 1~b! show the influ-
ence of the relative shiftd of crack faces on the typica
correlation length of the permeability field. The aperture fie
is coded with gray levels from white for maximal aperture
black for complete contact. The influence of the relative jo
shift d on the streamlines is illustrated in Figs. 1~c! and 1~d!.
These figures represent with bold lines stream-function is
alues computed solving~10! using the iterative procedur
~11! and~12! on two periods in thex andy directions. These
isovalues are to be compared with the computed press
stream-function orthogonal coordinates system represe
on the deformed mesh computed from the scheme~18! and
~19!. These figures illustrate that the streamlines’ large-sc
features are mainly controled by the shift value. More p
cisely, the translation distanced between both faces define
an upper length scale cutoff for the streamlines’ tortuos
This qualitative observation is fully consistent with a prev
ous analysis@18,16#, showing that the multiscale apertur
field cutoff length is precisely the distanced. As shown in
Fig. 2, the translationd is the typical correlation length of the
aperture covariance. Moreover, the choice of a direction
translationdW leads to an anisotropy of the covariance. Figu
2 shows both the parallel and perpendicular~with respect to
the in-plane displacement! covariance functions. Dispersio
will appear to be strongly influenced by the streamline str
ture as shown in the following. Moreover, anisotropy, whi
is a natural consequence of our geometrical model, can
influence dispersion@28#.

B. Geometrical influence on tracer transit time
dispersion curves

In the ideal case of an uncorrelated velocity field, t
transit time distribution is expected to be Gaussian, so
characterized by its mean valueT and its varianceDT2

5(t2T)2. We define the dispersivityD through
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FIG. 1. Aperture field and corresponding computed streamlines for a 5123512 domain, with roughness exponentz50.8, pressure
imposed, and no flux boundary conditions;~a! aperture field for a translationd5128 between crack faces in a gray scale,~b! aperture field
for d532 with the same crack surface topography as~a!, ~c! stream lines for permeability fielda, and~d! streamlines for permeability field
b.
e
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DT2

T2 . ~21!

D is related to the dispersion coefficientD, estimated at
distanceL1 from the origin, in the presence of a mean v
locity field U, D5L1UD. In the case considered in th
work, the crack-face shiftd is the typical correlation length
There is a finite numberL/d of such a correlation length
The fact that this numberL/d is rather limited in our case is
one obvious cause for a deviation from a Gaussian distr
tion. Moreover, above the scaled, the aperture field is no
-

u-

completely uncorrelated. The covariance function dec
with the distance as a power law with an exponent22(1
2z) and it can be shown that this decay is sufficient
induce an anomalous dispersion of the tracer for persis
crack topographies (z.0.5). Tracer curves are obtaine
from the computation of the traveling time along streamlin
We illustrate in Fig. 3 the numerical estimate of the influen
of finite size effects of the discretization mesh on trac
curve results. This influence on dispersion curves is qu
small and validate the choice of sizeL5128 above which
numerical results can be compared to theoretical predictio
Figure 4~a! shows tracer curves for the same crack surfa
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for two different relative shiftd/L51/128 and 64/128.
Gaussian and Coats-Smith@29# fits are shown for compari
son, illustrating the non-Gaussian character of the tra
time distribution. Although the Coats-Smith expression p
vides a reasonable fit to the data, we do not believe that
underlying theory is relevant to our case. We simply use
here as a measurement of the deviation from normal dis
sion. Figure 4~b! shows a superposition of each reduce
centered exit time distributions. It indicates a small sensi
ity of the higher moments (.2) of the tracer exit time
distribution to the shiftd of the two crack surfaces. Thi
numerical result leads us to focus on the second mom
~which should survive at long time scales in the absence
correlations! However, we have recently been able to d

FIG. 2. Aperture covariances versus the normalized distancex/d
for a self-affine crack of rough exponentz50.8 in the directions
perpendicular~dashed line! and parallel~continuous line! to the
translation direction.

FIG. 3. Test of the geometrical finite size effects on tra
curves. Different tracer curves have been calculated for two dif
ent relative displacement of the joint (L, d/L532/6451/2; d,
d/L564/12851/2 andh, d/L51/64; !, d52/128) and different
domain size. The finite size effect influence on the dispersion c
ficient estimation is smaller than 2% in each case.
it
-
he
it
r-

-
-

nt
of
-

velop, in a previous analysis@16#, a more refined description
of the tracer front useful for estimatinglocal dispersion. This
dispersion is obtained by measuring tracer spreading
particular point and is generally much easier to perform th
global measurements integrated over a line of tracer.
latter dispersion, which is relevant for both field and expe
mental purposes, is sensitive to the spatial correlation of
tracer front.

r
r-

f-

FIG. 4. ~a! Dispersion curves for a 1283128 simulated crack
for two different relative joint shiftsd with the same fractured
surface topography:d, d564; L, d51. Gaussian and Coats
Smith best fits are given for comparison, illustrating the no
Gaussian characteristics of dispersion.~b! Probability density func-
tion of the centered-reduced exit time corresponding to
numerical results in~a!. A comparison with the dotted centered
reduced Gaussian distribution shows more clearly the non-Gaus
character of dispersion. The good superposition of the simula
curves indicates a small sensitivity of higher moments (.2) of the
tracer exit time distribution to the typical correlation length of t
crack.
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Figure 5 shows the spatial structure of tracer fronts, wh
is a single-valued function, for different mean advecti
times or, equivalently, different mean advected distancesL1 .
This figure displays a roughness of the front increasing al
the transverse directionx2 with the advection distanceL1
from the origin. Moreover, we see that the front roughn
cannot be characterized by a single length scale. This qu
tative picture will be fully compared to quantitative predi
tion of @16# in the following subsection.

Figure 6 illustrates the influence of the mean aperturh
on the transit time distribution. This figure displays the se

FIG. 5. For each sample we compute the isotime fronts at
ferent mean traveled distancesL1: tracer locus front~isotime lines!
and their growing roughness with the distance traveled in
(P,C) coordinate system, for system size 1283128 with displace-
mentd51.

FIG. 6. Influence of the mean crack aperture on dispersion
lustrated for two different gaps between the same crack faces,
displacementd564 and a domain size 1283128. The more open
the crack, the more uniform the permeability and the velocity fi
and the less dispersion occurs. The straight line withd corresponds
to a h50.2 gap, whileL is for h50.4. The dotted line data se
with L corresponds to a linear time rescaling of theh50.4 case by
a factor 4.
h

g

s
li-

-

sitivity of dispersion curves with the aperture to one realiz
tion. A rescaling of transit time by a factor 4 permits a rou
superposition of tracer curves corresponding to a factor 2
the mean apertureh. The superposition between the data s
shown by closed circles and open diamonds indicates a
coupled effect of mean apertureh and relative translationd
on the exit time distribution. Moreover, it shows a quadra
dependence of dispersivity with the mean aperture. The
lowing subsection will study more precisely this decoupl
influence on the averaged dispersivity.

C. Geometrical influence on global averaged dispersion

Statistical averaging is mandatory to analyze the m
influence on dispersion of the geometrical parameters.
simulations of Figs. 4~a! and 4~b! have shown how the two
first tracer curve moments were sufficient to characterize
dispersion dependence on the typical correlation lengthd.
Figure 7~a! shows the histogram of the probability densi
function ~PDF! of numerically estimated dispersivity from
200 numerically generated dispersion curves. A broad dis
bution of dispersivity is observed, which increases with t
relative shiftd. A rescaling@Fig. 7~b!# permits us to obtain a
good superposition between the different PDF’s. This res
ing shows that the dependence of the first moment^D& on
the relative shiftd is sufficient to account roughly for the
whole PDF. Some more refined simulations based on 1
dispersion curves displayed in Fig. 7~c! illustrate the expo-
nential tail of the dispersivity PDF.

A previous theoretical analysis@16#, based on a simple
first-order perturbation analysis such as the truncated e
tion ~11! has quantified the anomalous dependence of
global dispersivity. In the limitd!L1 ,h!L1 the mean dis-
persivity ^D& is expected to scale as

^D&5
A2L1

2z22

h2
K~z!d2, ~22!

whereh is the mean aperture,L1 is the distance traveled in
the mean flow direction,d is the shift between the apertur
faces,A andz are, respectively, the roughness amplitude a
exponent of the fracture surface, andK(z) is a parameter
that depends on the orientation of the mean flow with resp
to the relative shift directiondW and on roughness exponentz.
Figure 8~a! shows the mean dispersivity variation with th
relative shiftd/L for three different imposed mean apertur
h while opening the crack from contact. The superposition
different curves in Fig. 8~b! rescaling the dispersivity by 1/h2

confirms the expected decoupling of the effects of mean
erture and relative shift indicated by Fig. 6 and predicted
Eq. ~22!. The quadratic dependence ond is also confirmed
by numerical simulations. More precisely, the little diffe
ence observed between the expected quadratic behavior@dot-
ted curves in Fig. 8~b!# and the numerical results may be du
to a systematic finite size effect related toO(d/L) correc-
tions to Eq.~22!. Anomalous dispersivity effects on the dis
tance traveledL1 are also a major feature of geometric
dispersion in rough self-affine cracks. This depende
comes from the wrinkling of the initially straight tracer lin
illustrated in Fig. 5. The front roughnesss(L1), the rms of
the fluctuations, is exactly related to time fluctuatio

f-

e

l-
r a
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FIG. 7. Normalized histograms of the dispersivity computed from statistically generated dispersion curves.~a! PDF p(D) of normalized
dispersivityD for 200 generated crack topographies Broad variations ofD that increase with the displacementd are observed:d, d51; L,
d54; !, d58 ~the same seeds have been used for each displacement!. ~b! The rescaled dispersivity histograms shows a good superposi
The first moment of the dispersivity PDF is the relevant parameter to account for crack relative shiftu. ~c! Inverse cumulated dispersivity
PDF obtained from 1000 realizations in the cased51 (d). The dotted line indicates the exponential tail of the distribution.
i
e

x
e
ts
in
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tly

is-
ef-
s(L1)5UADT2. Following Eqs. ~21! and ~22! and T
5L1U, the expected scaling of the front roughness
s(L1)5UADT2}L1

z . Figure 9 displays variations of th
front roughness with distance traveledL1 computed numeri-
cally, showing a power law behavior coherent with the e
pected scaling. The observed small deviation from the
pectedz50.8 exponent is compatible with finite size effec
as discussed in@30#. Thus anomalous dispersion occurs
the geometrical dispersion regime due to the long-range
relation of fracture roughness leading to an apparentlyhyper-
s

-
x-

r-

diffusive process. The roughness of tracer front is direc
related to the roughness exponent of the crack faces.

D. Anisotropy of the tracer front and consequences
for dispersion

1. Anisotropy of macroscopic dispersion

We estimate quantitatively in this section the global d
persion anisotropy coming from the previously defined pr
actorK(z). It is interesting to write from@18# the following
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expression for the aperture covariance, which has been c
puted analytically and shown in Fig. 3:

Cov~xW !5
udW 1xW u2z1udW 2xW u2z22uxW u2z

2udW u2z
. ~23!

At large scalesx@d this expression becomes

Cov~xW !;2zH 112~z21!S xW•dW

uxW u udW u
D 2J S uxW u

udW u
D 22~12z!

.

~24!

FIG. 8. ~a! Mean dispersivitŷ D& variations with the crack rela
tive shift d/L for three different mean aperturesh: h50.2 (h),
h50.5 (!); h52 (s) in arbitrary units, for a system sizeL
5256, averaged over 30 samples. Dispersivity increases withd/L
and decreases with the mean apertureh of the crack.~b! The res-
caling ^Dh2& shows a very good superposition. The mean aper
and relative shift dependence of^D& are thus decoupled. Moreove
~a! and ~b! show the scaling of̂D& asd2.
m-

Using classical weak disorder expansions of@31,8,32#, one
can estimate the dispersion coefficient by computing the
tegral of the velocity covariance tensor projected alo
streamlines. A first estimate of such an integral is given
the simple integration of the aperture covariance, alo
straight lines. In this context, the dispersion coefficient in
gral is dominated by the long-range behavior of Eq.~24! in
the case of persistent geometries, 1/2,z,1. Hence the an-
isotropy ratio of dispersion is simply given by the ratio
prefactors. In the case of mean imposed flow, parallel
perpendicular to the translation directiondW , one gets the an-
isotropy ratio

D i /D'.2z21. ~25!

This simple result, albeit obtained with a crude approxim
tion, gives a qualitative picture of the anisotropy, showi
increasing anisotropy asz goes to the value 1/2. In the sam
context of a long-wavelength expansion, from a Fourier
scription of the velocity fluctuations we obtain@16# the fol-
lowing integral dependence for orientational prefactors
Fourier space and radial coordinates

K i~z![E E ki~r ,u!dr du

[E E 2@12cos~r cosu!#r 2122z

3@cos~u!222 sin ~u!2#2dr du, ~26!

e

FIG. 9. Tracer locus front roughness dependence with the
tance traveledL1 is numerically studied for system sizesL5256
and 512, respectively averaged over 30 and 10 realizations, res
tively. Root mean square time fluctuationss(L1) are represented
versus the mean distance traveledL1 in log-log coordinates and
display a clear power law behaviors(L1)}L1

0.85. This small devia-
tion from the expectedz50.8 exponent is compatible with finite
size effects as discussed in@30#.
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K'~z![E E k'~r ,u!dr du[E E ki~r ,u!tan2~u!dr du.

The ratio of these parameters is displayed in Fig. 10; tec
cal details about their computation are discussed in the
pendix. Comparing Fig. 10 and the previous rapid estima
~25!, one can note the qualitative analogy showing a div
gence of the anisotropy asz goes to 1/2. It is worth noting
that this divergence is physically controlled by the syst
size in real cases while Eq.~26! is written in the case of
infinite systems. Moreover, our numerical computation of
anisotropy from Eq.~26! displayed in Fig. 10 forz.1/2
leads to stronger effects than expected from Eq.~25!. In the
special case of interest for many natural fracturesz50.8, the
prediction isK'(0.8)/K i(0.8)56.6860.01. Direct numeri-
cal results are consistent with such a mean estimate of
anisotropy ratio^D'&/^D i& as shown in Fig. 10. Such
strong effect is experimentally interesting because it offer
unique opportunity to access the relative shift orientat
from a tracer dispersion analysis.

2. Tracer front self-affine structure

Another interesting aspect of the anisotropy lies in
front structure itself. As mentioned previously, the meand
ing of the tracer line is of special interest for local dispersio
We are interested in the tracer meandering front that
consequence of a weakly disordered permeability field.
us note that the time needed to travel a distanceL1 along the
flow ~directionx1) is

t~L1 ,x2!5
1

uv ~0!u
@L12f~L1 ,x2!#, ~27!

wheref(L1 ,x2) is the transit time fluctuations and can b
computed in Fourier space. We obtain in@16# the scaling
behavior for long wavelengthskWdW !1,

FIG. 10. Anisotropy ratio of dispersivityK'(z)/K i(z) estimated
for the mean imposed flow parallel and perpendicular to the rela

shift direction dW (L). Numerical calculations derived from a
analysis of@16# is compared to numerical simulations results in t
casez50.8 for 5123512 systems averaged over 10 realizatio
(d). Both estimates are consistent, within error bars, indicatin
strong anisotropy ratio of natural fractures.
i-
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e
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f̃~k1 ,k2!}2
A

h

kWdW uku212z

k1
S k1

222k2
2

k2 D . ~28!

A constantt section thus provides the geometry of this trac
line. Due to the perturbative origin of this result, a del
f/v0 can also be interpreted as a distancef with respect to
the mean front position. The functionf thus gives the pro-
gressive wrinkling of the tracer line. The most importa
property to be noted is the homogeneity off̃ in k of degree
2(11z). Therefore,f is a self-affine function of exponen
z and the angular dependence inkW space is to be interprete
as a significant anisotropy but does not change the rough
exponent. Therefore, we conclude that the front progr
sively develops a self-affine character over a range of sc
that is limited by a short-range oned equal to the relative
surface shift and a large oneL1 , i.e., the convected distance

We consider numerically the two cases where the rela
shift between the two surfaces is either parallel or perp
dicular to the mean flow direction, i.e.,dW 5deW1 and dW

5deW2 . Figure 11 shows the resulting power spectra of
front position with a power law fit corresponding to a dete
mined roughness exponentz f ront'0.7560.10, close to the
choosen roughness exponentzsur f ace50.8. Thus the agree
ment with the theoretical prediction is quite satisfactory.
this figure the fracture surface is discretized on a 5123512
grid, the relative shift magnitude is 1, andL1 is 256. The
relative amplitude of the power spectra depending on
orientation ofdW for small k2 gives the large-scale dispersio
anisotropy displayed in Fig. 10.

IV. CONCLUSION

We have numerically analyzed dispersion in self-affi
rough cracks in the geometrical regime, focusing on the

e

s
a

FIG. 11. Mean Fourier spectraPf(k2) of the tracer front along
the x2 direction perpendicular to the mean flow. The average
performed over 10 realizations of 5123512 system size.d5d2

51 (d) and d5d151 (L) displacements perpendicular an
parallel to the mean flow orientation are represented.



rs
al
ge
ce
ve
is
hi
ks
rin
co
ee
st
a
na
tiv
he
ffi-
ee
xp
th
gh
r a

is
ud

t
im

st
.
o
rc
.

of

ral
nal

that

o
pen-
the
cific
of
an

ety
ion
ck.

PRE 58 3345NUMERICAL STUDY OF GEOMETRICAL DISPERSION . . .
pendence of dispersion on simple geometrical paramete
natural fractures in this regime. We demonstrate numeric
the significance of mean dispersivity with ensemble avera
simulations, which account for most of the observed tra
spreading dependence on geometrical parameters. We
fied numerically previous theoretical predictions of the d
persivity dependence on the mean aperture, relative s
and tracer traveling length of self-affine rough crac
Anomalous dispersion and tracer front mean meande
variations as a function of advected distance have been
sidered in detail. Strong anisotropic effects have also b
identified, even though the original fractured surface are
tistically isotropic. Macroscopic dispersion anisotropy h
been studied with both direct numerical simulation and a
lytic computations using an earlier large-scale perturba
expansion. Agreement is found between both approac
indicating a large anisotropy ratio for the dispersivity coe
cient in natural fractures. Moreover, this anisotropy has b
shown to increase drastically as the crack roughness e
nent z approaches 1/2. We thus quantified numerically
self-affine features of the tracer front, showing that its rou
ness exponent is simply equal to that of the crack face fo
orientations of the flow. Moreover, a strong anisotropy
observed for the amplitude of the front roughness. This st
motivates further experimental work on natural systems
examine and characterize the geometrical dispersion reg
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APPENDIX: NUMERICAL ESTIMATE OF
ORIENTATIONAL EFFECTS

We analyzed in@16# the expression, in Fourier space,
orientational prefactor, in radial coordinates:

K i~z!5E E ki~r ,u!dr du

5E E 2@12cos~r cosu!#r 2122z@cos~u!2

22 sin ~u!2#2dr du, ~A1!

K'~z!5E E ki~r ,u!tan2~u!dr du5E E k'~r ,u!dr du.

~A2!

The above expression forK i is convergent for 0,z,1 @one
can easily check that for small distancesr cos (u)!1 a Tay-
lor expansion of the cosine provides anr 2 factor that guar-
antees the convergence of the above-mentioned integ#.
The perpendicular dispersion integral involves an additio
singularitiy for r→` and u5p/2. The latter singularity is,
however, integrable ifz.1/2. For a smaller value of the
roughness exponent, the divergence means physically
the integral is controlled by its upper bound~the distance
traveled in this case! and thus the ratio of perpendicular t
parallel dispersion coefficients becomes system size de
dent. Forz.1/2 the integrals are all convergent and thus
anisotropy is finite and system size independent. The spe
sensitivity of the dispersion coefficient to the orientation
the relative shift of the two surfaces with respect to the me
flow orientation is much more than a mathematical subtl
since it provides a potential access to the shift orientat
from directional dispersion measurements in an open cra
This idea is discussed in more detail in the main text.
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