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Numerical study of geometrical dispersion in self-affine rough fractures
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We report a numerical study of passive tracer dispersion in fractures with rough walls modeled as the space
between two complementary self-affine surfaces rigidly translated with respect to each other. Geometrical
dispersion due to the disorder of the velocity distribution is computed using the lubrication approximation.
Using a spectral perturbative scheme to solve the flow problem and a mapping coordinate method to compute
dispersion, we perform extensive ensemble averaged simulations to test theoretical predictions on the disper-
sion dependence on simple geometrical parameters. We observe the expected quadratic dispersion coefficient
dependence on both the mean aperture and the relative shift of the crack as of well as the anomalous dispersion
dependence on tracer traveling distance. We also characterize the anisotropy of the dispersion front, which
progressively wrinkles into a self-affine curve whose exponent is equal to that of the fracture surface.
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PACS numbg(s): 62.20.Mk, 05.40t

[. INTRODUCTION the influence of the sample size, of the relative displacement

of the complementary rough walls, and of the orientation

between the mean flow and the displacement. The simula-
Flow and mass transport in fractured media is a complexions are two-dimensional, involving a two-dimensional frac-

problem with many applications to pollutant dispersion andture surface, and the flow is computed in the lubrication ap-

waste storage as well as to geothermic and oil and gas r@roximation. Let us discuss now the dispersion mechanisms

covery processdd,2]. From a fundamental point of view, it acting in fractures and their domain of applicability.

has recently stimulated a great deal of interest in connection

with different approaches to the description of fracture B. Tracer dispersion mechanisms in rough fractures

roughne§s In terms of a self-affine geomejidy4]. A key Tracer dispersion is a key tool used to analyze nonlocal
observation[5,6] is that flow and solute transport are not gy4tia| correlations of the velocity field in a porous or frac-
distributed evenly across the fracture surface: Instead, they) o system. We consider a steady three-dimensional Stokes

are often concentrated in some preferential flow paths whil - . .
P b w u(x) established in the rough wall fracture geometry

large parts of the fracture often act as dead zones. This effe Ecro duced above. Locally we assume that the local tracer
is very much dependent on the roughness of the fracturf! ) Y,

walls and it plays a crucial role in enhancing pollutant trans-concentratiorc obeys a convection-diffusion equation

port in a fractured zone.

In the present paper we present a numerical simulation of
tracer dispersion in fractures with self-affine rough walls.
Tracer dispersion, due to its nonlocal nat{ife8], is indeed a
unique tool used to detect and characterize the influence of . o . )
preferential flow channels: Particles flowing through suchhereDp, is the molecular diffusion coefficient. This behav-
paths cross the sample and reach the detectors much soof@fr IS postulatedat the local level. _ _
than those trapped inside low-velocity zones. More global ©Our aimis to be able to characterize the dispersion prop-
measurements such as the average permeability or electric@iities of the tracer in such a geometry without having to
conductivity of the fracture are dominantly controlled by its ésort to a detailed three-dimensional description. Upon
effective aperturg9] and thus are less sensitive to flow het- Coarse graining at a scale much larger than the heterogeneity
erogeneities. Previous studies have indeed confirmed th&fale and integration over the thicknegsof the crack, it can
tracer dispersion in fracture geometrigg10,11 often re- P& shown that if the heterogeneity is small enough, the
sults largely from disparities between transit times alongcoarse-grained concentratidB(x,,x,) obeys an effective
macroscopic para”e| ﬂOW Channe's_ Convecj|0n'd|ffus|0n equat|0n, with the Coarse'gra|ned ve-

The present work is devoted to a systematic quantitativéocity U(x;,X,) giving the advection term and an effective
numerical analysis of these problems in the realistic case of dispersivity tensoD;; .
self-affine roughness geometry. We investigate in particular We define the coarse-grained fields as

A. Motivation of the study

ac(x,t

) +U(x)-Ve(x,t)=D,V2e(X,t), (1)
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lar diffusion and Taylor dispersion are the only two
C(X11X2)=J f @(X1=Xq,Xa— X3) mechanisms active in fractures with smooth plane walls.

For rough walls, on the contrary, the aperture of the crack
is no longer constant and therefore the fluid velocity displays
spatial fluctuations even after being averaged over the thick-
ness. This additional mechanism is also assumed to be taken
whereh is the aperture of the crack ang is the coarse- into account in the coarse description, corresponding to a
graining weight function, e.g., a Gaussian, of unit integralscale much larger than the heterogeneity scale. It induces a
and decaying fast above a typical length scale larger than thgeometrical dispersion component, an effect comparable to
heterogeneity scale. A similar transformation is made on thehat observed in three-dimensional porous média5s)). If
velocity field. The macroscopic description can be written as£q. (3) is satisfied, the longitudinal coefficieb; is propor-

X

(1/h)f c(X1,X5,X5)dxg|dx;dx;, (2)

(7] tional to velocity(the dispersivity”,=D,,/U represents the
) Lagrangian correlation length of the flow figldThe geo-

§+ U. J9C _ D. J°C 3) metrical, molecular, and Taylor dispersion components sim-
at Yox; X 0X; ply add up in series: Thus tHg? Taylor dispersion compo-

nent dominates at high velocities, geometrical)(
U; and D;; are, respectively, the components of the localdispersion at lower ones, and finall?) molecular diffu-
mean macroscopic flow velocity through the fracture or thesion at still lower velocities. A quantitative theoretical analy-
porous sampléaveraged over the apertirand of the dis-  sis of the expected transition between these different regimes
persivity tensor. The latter dispersivity tensor results fromcan be found ifi16] as well as predictions of the dependence
velocity fluctuations in the local field and/or systematic of the geometrical regime on the roughness of the crack.
variation across the thickness, which are absent from th§hese predictions are verified qualitatively in experiments
coarse-grained descriptio can be expressed as the La- [17] on model fractures with parallel plane walls: For smooth
grangian velocity field covariance tenddr2] surfaces, only molecular and Taylor dispersion are observed;
. for rough ones, geometrical dispersion occurs at low veloci-
i ON LA (Y 1. ties and the Taylor component dominates at higher ones.
Py T“an< Jo Vi@ =Uiiv;® Uj]dt>' @ The present numerical model deals with geometrical dis-
persion effects directly associated with the velocity field dis-
where the integration is performed over particule trajectorie®rder; Taylor and molecular dispersion terms are, on the con-
andV is the two-dimensional velocity field obtained from an trary, much less related to flow field heterogeneities and are
integration ofu over the aperture. not taken into account. We can thus use a simpler two-

Several dispersion mechanisms are present in fracturedimensional model since we do not need to take into account

Let us first discuss the ideal case of a perfect Hele-Shaw celfn€ flow structure in the direction perpendicular to the frac-
i.e., an ideal plane crack with a constant apertur@and an  tUré surface. These simulations describe adequately tracer
uniform flow. In this case, the velocity is simply a Poiseuille diSpersion in the intermediate range otcke number values
flow with a parabolic profile across the thickness. The coars€Uch that both molecular diffusion and Taylor dispersion are
graining in this simple case consists in averaging the velocity'€dligible. The limit of validity increases towards higher Pe
components over the thickness. Pure molecular diffusion i§alues as the heterogeneity of the flow field increases for a
significant only at extremely low velocities such that the Pe 9'V€n mean fracture aperture: Geometrical dispersion, indeed
clet number Pe Uh/D,,, is less than 1. At high velocities, INCréases with heterogeneity and ends up superseding Taylor
the Taylor dispersion mechanigi3] dominates: It accounts diSPersion which remains almost the same. It must be also
for the spreading due to the Poiseuille velocity profile be-Pointed also that the Gaussian convection-diffusion equation
tween the fracture walls balanced by transverse moleculdy i valid only if the correlation length of the flow velocity
diffusion (homogenizing tracer concentration across the apfi€!d is small compared to the sample size: This is not the
ertur. The resulting longitudinal “Taylor” dispersion coef- €aseé when large-scale preferential channels are present and
ficient Dy can be obtained analytically in this case for paral-diSPersion must then be characterized in another way.

lel plane walls a$14]
C. Geometrical and transport properties
5-D h2u? 5 © of self-affine rough fracture joints
= =+
I~ Taylor 210D, " An important point in modeling the topography of frac-
) o ) o o ) ture surfaces is the observation that they can often be de-
(D is the longitudinal dispersivity coefficient, i.@, fora  scribed as self-affine structurf3]: This applies to very di-
flow along thex axis). Taylor dispersion is observable in yerse materialgfor instance, metal alloys, concrete, rocks
fractures because of their inherently quasi-two-dimensionalych as granit§18,19, marble, and sandstorje0]). Self-
flow geometry: Only molecular diffusion can move tracer affine surfaces display scale invariant properties provided

particles across the flow lines away from the fracture walls opne yses different dilation ratios parallel, A, and perpen-

dimensional porous media such as grain packings, a given

flow line moves continuously away from pore walls or to- )\3:)\(51‘2) (6)
wards them along its path through severals pores; hence Tay-

lor dispersion does not play such an important part. Molecu{{ is called the Hurst exponentThis property implies the
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existence of long-range correlations in the geometrical strucmentioned in the Introduction, we focus here on case of self-
ture of the fracture surface: These in turn give rise to lengttaffine topography, observed in many instances. We first gen-
scale effects that must be understood and taken into accoustate a self-affine surface with biperiodic boundary condi-
when extrapolating laboratory scale measurements to fiellons. We used both a dichotomy algorithm introduced by
applications. Such characteristics are observed for very divoss[25] and a Fourier method to generate such a self-affine
verse materials and fra_lcturation mechanisms; the expahentiopography. The roughness exponent is chosen tol be
has also been found in many cases to be close to a samep g The amplitude of the roughness is chosen so that the
value{=0.8%0.05, although some deviations have been obean value of the height difference at the mesh size of the
served for some materials and at some length scales. discretization is constant. Therefore, the global standard de-
It has been suggestdd] that these self-affine features ;o of the height of the crack depends on its dizeThe

allow one to predict variations of geometrical and transpor%rack surfacez(x) is then used to compute the aperture of

properties for fractures limited by complementary surface ,
shifted with respect to each other. A an important ingredien?he crack after the .tWO faces are translated with respect to
each other by a shift along the mean crack planglus a

is the residual displacementz perpendicular to their mean )
translationh normal to the mean plane so that the two sur-

plane of two such surfaces of global sizeafter they have i
been displaced laterally by a distante. It has been shown faces do not overlap but have a point of contact. Therefore,

[18] both experimentally(on granite blocksand theoreti- We obtain the aperture field @x) =z(x) —z(x+u)+h.

cally thatAz does not scale exactly as expected\as, but Given the aperture field, we use the Iu.br|c_at|on or Rey-
that a logarithmic finite size term depending on the rationolds approximation to compute the velocity field. Thus we
Ax/L must be introduced. Global physical quantities such agonsider the aperture gradient to be small enough so that we
the permeability of the fracture or its effective electrical con-may consider that the velocity field is locally a Poiseuille
ductance after it has been saturated with a conducting fluilow everywhere in the crack, with a parabolic velocity pro-
have also been studig®]. Both the permeability and the file across the aperture. This reduces the three-dimensional
electrical conductances are shown to depend mostly on theroblem to a two-dimensional one and we simply have to
normal distanceAz, however, very large fluctuations of getermine the aperture-averaged velocity fielftom (i) the
these quantities are observed when the direction and the aMycompressibility condition

plitude of the lateral displacemerx is varied, Az being

kept constant. This confirms that the flow velocity and the = N2

elepctrical current fields are influenced by the dis)g)lacement V-[a)jv(9)]=0 )

and that strong heterogene|.t|.es may appear: tracer dlspersmap]d(”) the flux/pressure relation similar to Darcy’s law, with
should be much more sensitive to these effects.

Previous numerical simulation21,22 have been per- a local permeability proportional to the square of the aperture

formed to investigate the influence of random or self-affine 5 -

roughness on tracer dispersion through fractures: It is as- U()Z): _a (X)ﬁP(i): _ wﬁP(i) ®)
sumed in these works that the local fracture thickness re- 129 7 '

mains constant in the direction perpendicular to the flow in

the fracture plane. This allows one to describe in detail thavhereP is the coarse-grained pressure field. The applicabil-
influence of roughness on Taylor dispersion; however, it idty of the Reynolds approximation is based on the condition
impossible in this framework to account for geometrical dis-that the aperture gradient is much smaller than unity, i.e.,

persion effects that require thickness variations in the twqva|<1. In turn, this implies that the local slope of the crack
directions of the mean fracture plane. Other authorsyrface is much smaller than unity. Let us note that in the
[10,11,5,23 have studied flow in fractures simulated as acase of a self-affine crack, with a roughness exponent strictly
random permeability field accounting for aperture variationssmaller than unity, the coarse-grained slope estimated at a
They did not, however, introduce specific aspects related tgcale/ decreases ag 1. Therefore, the small slope limi-
the self-affine roughness geometry or to the fact that we argytion can be used at a sufficiently coarsened scale if an
not dealing with independent rough surfaces but with identieffective hydraulic aperture is introduced. Using an experi-
cal surfaces shifted by a specific amount. This mirrors th@nental determination of the crack surface topography, the

fact that actual fractures observed in nature are created froReynolds approximation has been shown to be valid above a
a single block of material24] with the two halves shifted gcale of a few series of 10m [9].

cally [18] that, in this case, the correlation between the apsolyves for the pressure and stream function. Then tracer ad-
erture at two different points of the fracture depends strongly,ection is computed in the pressure-stream function coordi-
on the relative displacement of the surfaces: This will obvi-pate system and the corresponding spreading of a tracer step

ously influence the structure of the flow field. We shall there-yrofile is computed from the advection time along stream-
fore pay particular attention to the influence on tracer disperjipes.

sion of this relative shift and of its orientation; the influence
of the finite size effects discussed above on the magnitude of
dispersion will also be investigated.

A. Hydraulic solution

Given the permeability field<(>2) on a squared_ XL

meshed domai®, the pressure fiela’(f) satisifes the equa-
Our aim is to take into account the multiscale features otion imposed by the divergence-free flux field and the local
the crack permeability induced by the crack roughness. AParcy relation(8):

II. NUMERICAL METHODS
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R 3Vk(X) . - 3. o scheme. Such an underrelaxation can even be imposed lo-
AP(X)=—3 W'VP(XF —5VIIn k()]-VP(x). cally, i.e., precisely in the region wheiV In k(x)-VP%
©) [VPY|>1, for greater efficiency.

From the definition of the stream functionf'(i) B. Tracer dispersion
=(0,07(x)), a(x)v(x)=VX¥(x), and Darcy's law(8) Once the pressure and velocity fields are determined, we
we get wish to model thegeometrical dispersion regimdor that
- - purpose, we note that the parabolic velocity profile is an
AW (X)= 3 Vk(ax) VW (X)= Eﬁ[ln K(X)]- VW (X), essential ingredient of the Taylor regime, but that it does not
2 Kk(x) 2 affect the geometrical dispersion. We assume that molecular

(10) diffusion is efficient enough to avoid the Taylor regime, i.e.,
. Ua/D,<1. This allows us to deal simply with the aperture-
with averaged velocity fieléi.e., a two-dimensional description in
.o . the mean crack planelt is assumed that aperture variations
VP(x)-VW¥(x)=0. occur over much larger scales than the mean aperture and the

Th imil . b ved. simul velocity is large enough to have convection effects dominant
ese two very similar equations can be solved, simultag,hared 1o diffusion ones. For this discussion, we intro-

neously and iteratively, by a spectral method consistent Wi“auce the “Pelet” number Pé constructed from the velocity

the plpenodlmty qf th?’ permeability f'eld_' Th"_s choice is U iy ctuationsV and the correlation length of the aperture fluc-
merically convenient in the sense that it limits the Spur'ousnuationg so that Pe=8VE/D,,. To observe the geometric
effects of boundary conditions. However, its weakness lies "?iispersion regime we assumg’.% I this limit, valid only

the absence of an experimental counterpart. for é&>h, we can consider the “infinite” Badet number limit

We note that if the pressure gradient is periodic, the PreSat the two-dimensional description. More precisely, using

sure itself is not periodic but can be split into a periodic part ur previously defined Réet number Pe Uh/D.,, we ob-

and a constant grad_|ent term. The latter is treated separat Nined in[16] the limit of validity of the geometrical regime
and acts as the forcing term for the flow. The mean pressure

gradient is oriented at 45° with respect to the principal axis (5\/) -2

of the square grid used in the discretization, in order to limit U —<<Pe<

mesh orientation effects. The spectral iterative procedure is ¢
based on a weak disorder expansion, commonly encountered o e

" heterogeneous porous medi tera The olowng | "S5 Sessed hat uch o Iming concilon s needed
procedure, albeit restricted to weakly heterogeneous medi 9

unlike Ref[26], is consistent with the aperture field of real- Ity field. We expect a Iess'restrlctlve condl_tlon' in the pres-
istic fractureg9]. From Eq.(9) we look for a solution for the ence of long-range correlations of the velocity field as exam-

e . ined here. It is also important to note that this limit is
pressure gradient in the form of an expansion different from the infinite Pelet limit of the full three-
dimensional problem, which is evidently governed by the
Taylor regime.

1D To compute tracer dispersion in the geometric regime, we
where have to study the transit time distribution for particles pas-
sively advected across the domain by the fluid flow. In order
APO(x)=0 (12 to follow the particle trajectories we use a coordinates
change from Cartesiarx{y) position to an adimensionalized
for pressure-stream functiai®(x,y), ¥ (x,y)) orthogonal coor-
3 dinate system. This procedure is interesting because it over-
n>0AP™M(x)=— =V[In k(x)]- VP("1(x). comes numerical problems currently encountered with direct
2 Lagrangian computation of particle trajectories, such as lo-
. . cally nondivergent free velocity fields coming from a con-
The zeroth-order solution corresponds to the imposed corfyy 45 interpolation of the discrete flow field. Such effects,
stant mean pressure gradient, i¥R°(x) = VP°. Each con-  gajthough localized at the mesh size scale, are accumulated
secutive term is computed with a standard pseudospectrgler the particles’ trajectories and can lead to spurious vio-
technique. We compute on the right-hand side the scalggtions of the periodicity of the tracer spatial distribution in
product in direct space, while Laplacian inversion is calcuthe case of periodic boundary conditions. The idea of the
lated in Fourier space on the left-hand side. The use of thgresent method is to compute the trajectories of particles as a
fast Fourier transform algorithm makes this procedure verghange of coordinates. A mandatory condition for such a
efficient compared to direct-space conjugate gradient techcoordinate mapping to exist is the bijectivity of the maping
niques. A sufficient condition for such spectral iterative pro-petween the coordinatesx,{/) and the pressure stream-
cedure to converge i%ﬁ In k(x)-ﬁP°/||€P°||<1 for every  function(P(x,y),¥(x,y)) pair. This condition is fulfilled for
position x, provided the greater eigenvalue associated witha strictly monotonic pressure in the direction of the mean
the iterated pressure solution is always 1. A less restrictivémposed flow and a strictly monotonic stream function per-
condition can be obtained with an underrelaxation iterativgpendicular to this direction. This is obtained, in our case in

SV\?2 ¢

VP(x)=VPO(x)+ VPO (x)+ - + VP (x) + - - -,
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the presence of a mean imposed pressure gradient, fdthe convergence of this method is conditioned by the Jaco-
weakly heterogeneous media. More precisely, for such mebian J(x,y)p v, Of the transformatiori16). It is straightfor-
dium, each consecutiveth term of the pressure expansion ward to show that this Jacobian satisfies
written in Eqg. (11) can be shown[27,7] to be of

O(a®"(Ink)), whereo(Ink) is the log-permeability fluctua- .. ax)?®
tion parameter. A weak disorder expansi@hcan be written I7HXY) e,y =VP-VX§=|VP|? 1

if o(Ink)<<1, which gives a sufficient condition to impose a 7
strictly monotonic pressure and stream function for a log- , ) i
normal permeability field distribution. Practically, for fresh, COmputing Eq(16) thus requires that at eack,§) location
noncompressed fractures, relative fluctuations of the apertuMe](X*y){Py‘I'}Hgl' As can be seen from E(R0), this condi-

field are sufficiently weak9] to allow for such a coordinate 10N is fulfilled in a weakly disordered system, where the
mapping. Hence one is interested in inverting thelocal dissipated energy is dominated by the mean imposed

>

(P(x,y),¥(x,y)) relation to find the(x(P,¥),y(P,¥)) po-  VP°- VX 4°. Numerical implementation of this iterative
sitions of pressure and stream-function isovalues. To simprocedure requires, at each step, the estimation
plify notations, we introduce the normalized stream-functionX"(P,#),Y"(P,#) on the continuous system of coordinates
(P,y), from the values of andg on a discrete one. This
(X, y) =V (x,y)/{k), (14 estimation is achieved with an undermesh mapping, to inter-
polate linearly an accurate estimation of the continuous de-
where (k) is the arithmetic mean of the permeability field. sired X"(P,),Y"(P,). Dispersion curves are then easily
This choice provides symmetrical expression for the pressurgomputed in the ,) coordinate system, integrating the
and the normalized stream function. At the zeroth order ofdvection time along each streamliféx,y)=c.
perturbation expansion the Darcy 1a) can be rewritten

VX y°=VP°. This relation can be inverted numerically by
an iterative procedure. We will write for convenience this
inversion with a mean pressure gradient parallek taxis. A. Stream-function structure
We choose a mean pressure gradient parallel to the principal
diagonal direction for numerical precision

(20

Ill. NUMERICAL RESULTS

The aperture maps of Figs(dl and Xb) show the influ-
ence of the relative shiftl of crack faces on the typical
correlation length of the permeability field. The aperture field
is coded with gray levels from white for maximal aperture to
black for complete contact. The influence of the relative joint
shift d on the streamlines is illustrated in Figgcland Xd).
These figures represent with bold lines stream-function isov-
alues computed solvingl0) using the iterative procedure
(11) and(12) on two periods in the andy directions. These
isovalues are to be compared with the computed pressure-

P(x,y)=x+f(Xx,y), (15

P(X,y)=y+a(xy).

The functionsf andg are known from the numerical solu-
tion of Egs.(9) and (10). We are now interested in finding
the inverse mapping

X(P, ) =P+X(P,) (16) stream-function orthogonal coordinates system represented
’ T on the deformed mesh computed from the schéb® and
y(P, )=+ Y(P, ) (19). These figures illustrate that the streamlines’ large-scale

features are mainly controled by the shift value. More pre-
where X(P,#),Y(P,y) are the desired inverse mapping Cisely, the translation distancebetween both faces defines
functions. From Eqs(15) and (16) we obtain the implicit an upper length scale cutoff for the streamlines’ tortuosity.

equation satisfied bYX(P, ) andY(P, ), This qualitative observation is fully consistent with a previ-
ous analysig 18,16, showing that the multiscale aperture
X(P,p)=—F(P+X,p+Y)=—f, (17 field cutoff length is precisely the distande As shown in
Fig. 2, the translatiod is the typical correlation length of the
Y(P,y)=—g(P+X,y+Y)=—g. aperture covariance. Moreover, the choice of a direction of

translationd leads to an anisotropy of the covariance. Figure
The computation oK(P,#),Y(P, ) is achieved in the same 2 shows both the parallel and perpendiculaith respect to
spirit as Eq.(9) with an iterative procedure. First, we ap- the in-plane displacementovariance functions. Dispersion
proximate the right-hand side dependencef(X,y) and  will appear to be strongly influenced by the streamline struc-

a(x,y) by f(P,¢) andg(P,#), ture as shown in the following. Moreover, anisotropy, which
0 is a natural consequence of our geometrical model, can also
X*(P,4)=0, (18 influence dispersiofi28].
YO(P' $)=0. B. Geometrical influence on tracer transit time

. . dispersion curves
We then proceed iteratively far>0,

In the ideal case of an uncorrelated velocity field, the
X"(P,yp)=—Ff(P+X"" L y+Y"" 1, (19  transit time distribution is expected to be Gaussian, solely
characterized by its mean valuk and its varianceAT?
Y'P,p)=—g(P+X"" 1 y+Y"" 1), =(t—T)2. We define the dispersivitp through
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FIG. 1. Aperture field and corresponding computed streamlines for & 512 domain, with roughness exponeht 0.8, pressure
imposed, and no flux boundary conditioria} aperture field for a translatioth= 128 between crack faces in a gray scélg,aperture field
for d=32 with the same crack surface topographyas(c) stream lines for permeability field, and(d) streamlines for permeability field
b.

AT? completely uncorrelated. The covariance function decays
D=—=. (21)  with the distance as a power law with an exponer2(1
—{) and it can be shown that this decay is sufficient to
induce an anomalous dispersion of the tracer for persistent
D is related to the dispersion coefficieft, estimated at crack topographies {0.5). Tracer curves are obtained
distancel , from the origin, in the presence of a mean ve-from the computation of the traveling time along streamlines.
locity field U, D=L;UD. In the case considered in this We illustrate in Fig. 3 the numerical estimate of the influence
work, the crack-face shifl is the typical correlation length. of finite size effects of the discretization mesh on tracer
There is a finite numbek/d of such a correlation length. curve results. This influence on dispersion curves is quite
The fact that this number/d is rather limited in our case is small and validate the choice of site=128 above which
one obvious cause for a deviation from a Gaussian distribuaumerical results can be compared to theoretical predictions.
tion. Moreover, above the scatg the aperture field is not Figure 4a) shows tracer curves for the same crack surface



3340

1.0 T T T .

08 r v

06 N

Covla(x)]

04 ~—

02 - - :
0.0 20 40 6.0 8.0 10.0

x/d

FIG. 2. Aperture covariances versus the normalized distaftte
for a self-affine crack of rough exponefit=0.8 in the directions
perpendicular(dashed ling and parallel(continuous ling to the
translation direction.

for two different relative shiftd/L=1/128 and 64/128.
Gaussian and Coats-SmifB9] fits are shown for compari-
son, illustrating the non-Gaussian character of the transit
time distribution. Although the Coats-Smith expression pro-
vides a reasonable fit to the data, we do not believe that the
underlying theory is relevant to our case. We simply use it
here as a measurement of the deviation from normal disper-
sion. Figure 4b) shows a superposition of each reduced-
centered exit time distributions. It indicates a small sensitiv-
ity of the higher moments %2) of the tracer exit time
distribution to the shiftd of the two crack surfaces. This
numerical result leads us to focus on the second moment
(which should survive at long time scales in the absence of
correlationy However, we have recently been able to de-

1.0

08

C()

p(t)

1.0

PLOURABOUE HULIN, ROUX, AND KOPLIK

0.0 s
100.0
(@)

0.40

0.20

0.00

(b)

300.0
t(arb. units)

400.0

-1.0 O:O
(t-<t>)/o(t)

1.0 2.0

0.6

g r——+ L=128 d=64
s—a =64 d=32
0.4 — L=64 d=1
— =128, d=2
0.2
0.0 ° -
0.0 200.0

100.0
t (arb. units)

FIG. 4. (a) Dispersion curves for a 128128 simulated crack
for two different relative joint shiftsd with the same fractured
surface topography®, d=64; ¢, d=1. Gaussian and Coats-
Smith best fits are given for comparison, illustrating the non-
Gaussian characteristics of dispersifr). Probability density func-
tion of the centered-reduced exit time corresponding to the
numerical results ina). A comparison with the dotted centered-
reduced Gaussian distribution shows more clearly the non-Gaussian
character of dispersion. The good superposition of the simulated
curves indicates a small sensitivity of higher momem] of the
tracer exit time distribution to the typical correlation length of the

crack.

velop, in a previous analysj46], a more refined description
of the tracer front useful for estimatigcal dispersion. This

FIG. 3. Test of the geometrical finite size effects on tracerdiSPersion is obtained by measuring tracer spreading at a
curves. Different tracer curves have been calculated for two differParticular point and is generally much easier to perform than

ent relative displacement of the joint(, d/L=32/64=1/2; @,
d/L=64/128=1/2 andd, d/L=1/64; », d=2/128) and different

global measurements integrated over a line of tracer. The
latter dispersion, which is relevant for both field and experi-

domain size. The finite size effect influence on the dispersion coefmental purposes, is sensitive to the spatial correlation of the

ficient estimation is smaller than 2% in each case.

tracer front.
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sitivity of dispersion curves with the aperture to one realiza-
tion. A rescaling of transit time by a factor 4 permits a rough
superposition of tracer curves corresponding to a factor 2 in
the mean aperturte. The superposition between the data sets
shown by closed circles and open diamonds indicates a de-
coupled effect of mean apertuheand relative translatiod

L on the exit time distribution. Moreover, it shows a quadratic
dependence of dispersivity with the mean aperture. The fol-
lowing subsection will study more precisely this decoupled
influence on the averaged dispersivity.

C. Geometrical influence on global averaged dispersion

L Statistical averaging is mandatory to analyze the mean
! influence on dispersion of the geometrical parameters. The
FIG. 5. For each sample we compute the isotime fronts at difSimulations of Figs. @) and 4b) have shown how the two
ferent mean traveled distances: tracer locus frontisotime lineg  first tracer curve moments were sufficient to characterize the
and their growing roughness with the distance traveled in thedispersion dependence on the typical correlation lemgth
(P,¥) coordinate system, for system size 32B28 with displace- Figure {a) shows the histogram of the probability density
mentd=1. function (PDF) of numerically estimated dispersivity from
200 numerically generated dispersion curves. A broad distri-
Figure 5 shows the spatial structure of tracer fronts, whictbution of dispersivity is observed, which increases with the
is a single-valued function, for different mean advectionrelative shiftd. A rescaling[Fig. 7(b)] permits us to obtain a
times or, equivalently, different mean advected distahges good superposition between the different PDF’s. This rescal-
This figure displays a roughness of the front increasing alongng shows that the dependence of the first mon{@it on
the transverse directior, with the advection distanck;  the relative shiftd is sufficient to account roughly for the
from the origin. Moreover, we see that the front roughnessvhole PDF. Some more refined simulations based on 1000
cannot be characterized by a single length scale. This qualiispersion curves displayed in Fig(cY illustrate the expo-
tative picture will be fully compared to quantitative predic- nential tail of the dispersivity PDF.
tion of [16] in the following subsection. A previous theoretical analysid6], based on a simple
Figure 6 illustrates the influence of the mean aperture first-order perturbation analysis such as the truncated equa-
on the transit time distribution. This figure displays the sention (11) has quantified the anomalous dependence of the
global dispersivity. In the limid<L,,h<L, the mean dis-

1.0 persivity (D) is expected to scale as
A2 32
(D)=—75— K(Hd? (22)
08 h

whereh is the mean aperturé,; is the distance traveled in
the mean flow directiond is the shift between the aperture
faces,A and{ are, respectively, the roughness amplitude and
exponent of the fracture surface, akq¢) is a parameter
that depends on the orientation of the mean flow with respect

to the relative shift directiod and on roughness exponeht
Figure 8a) shows the mean dispersivity variation with the
relative shiftd/L for three different imposed mean apertures
h while opening the crack from contact. The superposition of
different curves in Fig. &) rescaling the dispersivity by 7
confirms the expected decoupling of the effects of mean ap-
erture and relative shift indicated by Fig. 6 and predicted by
Eq. (22). The quadratic dependence dnis also confirmed
by numerical simulations. More precisely, the little differ-
ence observed between the expected quadratic beldaibr
FIG. 6. Influence of the mean crack aperture on dispersion "_ted curves in Flg._@)] ar_ld the numerical results may be due
lustrated for two different gaps between the same crack faces, forté) a systematic finite size eff_ect rel_afted @d/L) correc-
displacementi=64 and a domain size 128128. The more open tiONs to Eq.(22). Anomalous d|sp_erS|V|ty effects on the Q|s—
the crack, the more uniform the permeability and the velocity fieldt@nce traveled.; are also a major feature of geometrical
and the less dispersion occurs. The straight line @itborresponds ~ dispersion in rough self-affine cracks. This dependence
to ah=0.2 gap, while$ is for h=0.4. The dotted line data set comes from the wrinkling of the initially straight tracer line
with & corresponds to a linear time rescaling of the0.4 case by illustrated in Fig. 5. The front roughnesgL,), the rms of
a factor 4. the fluctuations, is exactly related to time fluctuations
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FIG. 7. Normalized histograms of the dispersivity computed from statistically generated dispersion @wed= p(D) of normalized
dispersivityD for 200 generated crack topographies Broad variatiori3 thfat increase with the displacemehére observed®, d=1; ¢,
d=4; », d=8 (the same seeds have been used for each displacelieiithe rescaled dispersivity histograms shows a good superposition.
The first moment of the dispersivity PDF is the relevant parameter to account for crack relative ghjftnverse cumulated dispersivity
PDF obtained from 1000 realizations in the casel (®). The dotted line indicates the exponential tail of the distribution.

o(L;)=UJAT? Following Egs. (21) and (22) and T diffusive process. The roughness of tracer front is directly
=L,U, the expected scaling of the front roughness isrelated to the roughness exponent of the crack faces.
o(L;)=UJAT?=L{. Figure 9 displays variations of the

front roughness with distance travelkg computed numeri- D. Anisotropy of the tracer front and consequences

cally, showing a power law behavior coherent with the ex- for dispersion

pected scaling. The observed small deviation from the ex-
pected{=0.8 exponent is compatible with finite size effects
as discussed if30]. Thus anomalous dispersion occurs in  We estimate quantitatively in this section the global dis-
the geometrical dispersion regime due to the long-range copersion anisotropy coming from the previously defined pref-
relation of fracture roughness leading to an appardntper-  actorK(¢). It is interesting to write fronj18] the following

1. Anisotropy of macroscopic dispersion
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FIG. 9. Tracer locus front roughness dependence with the dis-
tance traveled., is numerically studied for system sizés=256
and 512, respectively averaged over 30 and 10 realizations, respec-
45 tively. Root mean square time fluctuationg§L,) are represented
versus the mean distance traveled in log-log coordinates and
— display a clear power law behavior(L,)=L3#°. This small devia-
f\]\ 5.0 F tion from the expected=0.8 exponent is compatible with finite
B size effects as discussed[ig0].
=
=
S 55l Using classical weak disorder expansions 8f,8,32, one
fg can estimate the dispersion coefficient by computing the in-
2 tegral of the velocity covariance tensor projected along
streamlines. A first estimate of such an integral is given by
6.0 ¢ the simple integration of the aperture covariance, along
straight lines. In this context, the dispersion coefficient inte-
gral is dominated by the long-range behavior of E2f) in
6.5 the case of persistent geometries,<1/2<1. Hence the an-
25 20 15 10 isotfropty ratilo (?[Ldispersio? is simply give(;l fIlay the ratiIT) Iof
refactors. In the case of mean imposed flow, parallel or
(b) log,,(d/L) P p p

perpendicular to the translation directidn one gets the an-
FIG. 8. (@) Mean dispersivity D) variations with the crack rela-  isotropy ratio
tive shift d/L for three different mean aperturés h=0.2 (),
h=0.5 (x); h=2 (O) in arbitrary units, for a system size oy
=256, averaged over 30 samples. Dispersivity increases d¢ith D||/Dl—2§ 1. (25
and decreases with the mean aperturef the crack.(b) The res-

caling (Dh?) shows a very good superposition. The mean aperturerhis simple result, albeit obtained with a crude approxima-
and relative shift dependence @) are ;hUS decoupled. Moreover, tion, gives a qualitative picture of the anisotropy, showing
(@ and (b) show the scaling ofD) asd*. increasing anisotropy asgoes to the value 1/2. In the same

expression for the aperture covariance, which has been corr(1:9mext of a long-wavelength expansion, from a Fourier de-
P . P o scription of the velocity fluctuations we obtdjh6] the fol-
puted analytically and shown in Fig. 3: S ! : .
lowing integral dependence for orientational prefactors in
Coi |d+ X%+ |d— x|~ 2|x|% 9 Fourier space and radial coordinates
ov(X)= =
2|d|?
At large scalescs>d this expression becomes K”(é)zf f ky(r.6)dr do
> =\ 2 -\ —2(1-¢)
- x-d X = _ -1-2¢
C‘)V(X)~2§|1+2“_1)<|*| |a|) ](%) ' ) Jaetc o
X

X[cos(6)?>—2 sin(6)?]%dr d6, (26)
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FIG. 10. Anisotropy ratio of dispersivitf , (£)/K;(¢) estimated , ,
) : . -10.0
for the mean imposed flow parallel and perpendicular to the relative 0.0 1.0 2.0
shift directiond (¢ ). Numerical calculations derived from an log,(k,)

analysis 0f 16] is compared to numerical simulations results in the
case{=0.8 for 512512 systems averaged over 10 realizations F|G. 11. Mean Fourier specti;(k,) of the tracer front along
(@). Both estimates are consistent, within error bars, indicating ahe x, direction perpendicular to the mean flow. The average is
strong anisotropy ratio of natural fractures. performed over 10 realizations of 5%%12 system sized=d,

=1 (@) and d=d,=1 (¢) displacements perpendicular and

Ki(g)Ef f K, (r.6)dr dGEf f k(1. O)tarP(6)dr do. parallel to the mean flow orientation are represented.

~ Akd |k|7*¢ (ki—2k3
The ratio of these parameters is displayed in Fig. 10; techni- d(Kq,Kp)oc— " K vk (28
cal details about their computation are discussed in the Ap- 1

pendix. Comparing Fig. 10 and the previous rapid estimatiorn constant section thus provides the geometry of this tracer
(25), one can note the qualitative analogy showing a diverine. Due to the perturbative origin of this result, a delay
gence of the anisotropy asgoes to 1/2. It is worth noting  4/4° can also be interpreted as a distagevith respect to
that this divergence is physically controlled by the systemhe mean front position. The functiop thus gives the pro-
size in real cases while E¢26) is written in the case of gressive wrinkling of the tracer line. The most important

infinite systems. Moreover, our numerical computation of theproperty to be noted is the homogeneitygin k of degree

anisotropy from Eq.26) displayed in Fig. 10 forg>1/2  _ (1, ») Therefore,p is a self-affine function of exponent
leads to stronger effects than expected from @§). In the

special case of interest for many natural fractufes.8, the £ and the angular dependencekispace is to be interpreted
prediction isK , (0.8)/K;(0.8)=6.68+0.01. Direct nur’neri- as a significant anisotropy but does not change the roughness
cal results are consistent with such a mean estimate of tHgPonent Therefore, we conclude that the front progres-
anisotropy ratio(D, )/(D;) as shown in Fig. 10. Such a sively develops a self-affine character over a range of scales

strong effect is experimentally interesting because it offers éhat is limited by a short-range orik equal to the relative

unique opportunity to access the relative shift orientationSurface shift and a large ong, i.e., the convected distance.

from a tracer dispersion analysis. _We consider numerically the two cases where the relative
shift between the two surfaces is either parallel or perpen-
2. Tracer front self-affine structure dicular to the mean flow direction, i.ea=dé1 and d

Another interesting aspect of the anisotropy lies in the=d€z- Figure 11 shows the resulting power spectra of the
front structure itself. As mentioned previously, the meander{ront position with a power law fit corresponding to a deter-
ing of the tracer line is of special interest for local dispersion.Mined roughness exponetifon~0.75+0.10, close to the
We are interested in the tracer meandering front that is £N00S€N roughness exponeffrace=0.8. Thus the agree-
consequence of a weakly disordered permeability field. Lefent with the theoretical prediction is quite satisfactory. In
us note that the time needed to travel a distdncalong the thl_s figure the. fractu.re surfage is ('jlscreuzed.on a6h22
flow (directionx;) is grid, the relative shift magnitude is 1, athd is 256. The

relative amplitude of the power spectra depending on the

1 orientation ofd for small k, gives the large-scale dispersion
t(L1.X2)= W[Ll_ #(L1.x2)], (27)  anisotropy displayed in Fig. 10.
where ¢(L4,X,) is the transit time fluctuations and can be IV. CONCLUSION

computed in Fourier space. We obtain [ib6] the scaling We have numerically analyzed dispersion in self-affine
behavior for long wavelengthsd<1, rough cracks in the geometrical regime, focusing on the de-
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pendence of dispersion on simple geometrical parameters of APPENDIX: NUMERICAL ESTIMATE OF
natural fractures in this regime. We demonstrate numerically ORIENTATIONAL EFFECTS

the significance of mean dispersivity with ensemble averaged
simulations, which account for most of the observed tracep;
spreading dependence on geometrical parameters. We veri-
fied numerically previous theoretical predictions of the dis-

persivity dependence on the mean aperture, relative shift, KH(D:J J kj(r,0)dr dg

and tracer traveling length of self-affine rough cracks.

Anomalous dispersion and tracer front mean meandering _ _ 127 2
variations as a function of advected distance have been con- f J 2[1=cos(r cos6)]r [cos(6)
sidered in detail. Strong anisotropic effects have also been
identified, even though the original fractured surface are sta-
tistically isotropic. Macroscopic dispersion anisotropy has
been studied with both direct numerical simulation and ana—Ki(g):f f ky(r,6)tarf(6)dr dng f k,(r,0)dr dé.
lytic computations using an earlier large-scale perturbative

expansion. Agreement is found between both approaches, (A2)
indicating a large anisotropy ratio for the dispersivity coeffi-
cient in natural fractures. Moreover, this anisotropy has beedhe above expression fég; is convergent for €-{<1 [one
shown to increase drastically as the crack roughness exp&an easily check that for small distangesos ¢)<1 a Tay-
nent¢ approaches 1/2. We thus quantified numerically thdor expansion of the cosine provides ehfactor that guar-
self-affine features of the tracer front, showing that its roughantees the convergence of the above-mentioned infegral
ness exponent is simply equal to that of the crack face for aif he perpendicular dispersion integral involves an additional
orientations of the flow. Moreover, a strong anisotropy issingularitiy forr—vcc and 6= m/2. The latter singularity is,
observed for the amplitude of the front roughness. This studjiowever, integrable if>1/2. For a smaller value of the
motivates further experimental work on natural systems tgoughness exponent, the divergence means physically that

examine and characterize the geometrical dispersion regimg)e integral is controlled by its upper bourthe distance
traveled in this cageand thus the ratio of perpendicular to

parallel dispersion coefficients becomes system size depen-
dent. For{>1/2 the integrals are all convergent and thus the
anisotropy is finite and system size independent. The specific
sensitivity of the dispersion coefficient to the orientation of

We wish to thank R. Lenormand for pointing out interest- the relative shift of the two surfaces with respect to the mean
ing references and E. G. FlekkoR. Monasson, and A. flow orientation is much more than a mathematical subtlety
Steyer for stimulating discussions. This work has been consince it provides a potential access to the shift orientation
ducted with the support of a NATO Collaborative Researchfrom directional dispersion measurements in an open crack.
Grant between the City College of New York and ESPCI. This idea is discussed in more detail in the main text.

We analyzed ir{16] the expression, in Fourier space, of
entational prefactor, in radial coordinates:

—2sin(6)?]%dr dé, (A1)
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